Date of Award:
12-2017
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Civil and Environmental Engineering
Committee Chair(s)
Marvin W. Halling
Committee
Marvin W. Halling
Committee
Marc Maguire
Committee
Ziqi Song
Abstract
Electric vehicles represent a major accomplishment in the energy and transportation industry. Unfortunately, they are restricted to a small travel range because of limited battery life. Successful integration of wireless power transfer (WPT) systems into the infrastructure would remove the range restrictions of EVs. To successfully integrate this technology, several requirements must be met. First, the embedment process cannot interfere with the electrical performance of the inductive power transfer (IPT) system. Second, the presence of the IPT system in the pavement structure cannot negatively affect the roadway’s lifespan.
Several systems were directly embedded in roadway materials. The electrical properties of the systems were monitored during the embedment process. Then modifications were made to the IPT systems to optimize the embedment process. These modifications were then applied to a full scale IPT system which is being used to dynamically charge EVs.
To test the structural performance of the systems, tensile stresses were applied to the pads to simulate traffic loading conditions. These tensile stresses were applied under cyclic loading conditions to simulate fatigue conditions found in roadways. The number of cycles, and stress at failure was recorded an analyzed. The electrical properties of the IPT pads was also measured and analyzed during the fatigue loading conditions.
Checksum
8dd7a68c9de01c169594a8ad9cf7c963
Recommended Citation
Gardner, Trevor, "Wireless Power Transfer Roadway Integration" (2017). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6866.
https://digitalcommons.usu.edu/etd/6866
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .