Date of Award:

8-2018

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Computer Science

Committee Chair(s)

Vladimir Kulyukin

Committee

Vladimir Kulyukin

Committee

Xiaojun Qi

Committee

Nicholas Flann

Abstract

Colony Collapse Disorder (CCD) has been a major threat to bee colonies around the world which affects vital human food crop pollination. The decline in bee population can have tragic consequences, for humans as well as the bees and the ecosystem. Bee health has been a cause of urgent concern for farmers and scientists around the world for at least a decade but a specific cause for the phenomenon has yet to be conclusively identified.

This work uses Artificial Intelligence and Computer Vision approaches to develop and analyze techniques to help in continuous monitoring of bee traffic which will further help in monitoring forager traffic. Bee traffic is the number of bees moving in a given area in front of the hive over a given period of time. And, forager traffic is the number of bees entering and/or exiting the hive over a given period of time. Forager traffic is an important variable to monitor food availability, food demand, colony age structure, impact of pesticides, etc. on bee hives. This will lead to improved remote monitoring and general hive status and improved real time detection of the impact of pests, diseases, pesticide exposure and other hive management problems.

Checksum

b03735637a4b53a1e3cd52082a4bd6b8

Share

COinS