Date of Award:
5-2007
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Mathematics and Statistics
Committee Chair(s)
Ian M. Anderson
Committee
Ian M. Anderson
Committee
Mark Fels
Committee
David Brown
Committee
Charles Torre
Abstract
This thesis was concerned with classifying the real indecomposable solvable Lie algebras with codimension one nilradicals of dimensions two through seven. This thesis was organized into three chapters.
In the first, we described the necessary concepts and definitions about Lie algebras as well as a few helpful theorems that are necessary to understand the project. We also reviewed many concepts from linear algebra that are essential to the research.
The second chapter was occupied with a description of how we went about classifying the Lie algebras. In particular, it outlined the basic premise of the classification: that we can use the automorphisms of the nilradical of the Lie algebra to find a basis with the simplest structure equations possible. In addition, it outlined a few other methods that also helped find this basis. Finally, this chapter included a discussion of the canonical forms of certain types of matrices that arose in the project.
The third chapter presented a sample of the classification of the seven-dimensional Lie algebras. In it, we proceeded step-by-step through the classification of the Lie algebras whose nilradical was one of four specifically chosen because they were representative of the different types that arose during the project.
In the appendices, we presented our results in a list of the multiplication tables of the isomorphism classes found.
Checksum
340f97bd3d11745076364d7a0625fb82
Recommended Citation
Parry, Alan R., "A Classification of Real Indecomposable Solvable Lie Algebras of Small Dimension with Codimension One Nilradicals" (2007). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 7145.
https://digitalcommons.usu.edu/etd/7145
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .