Date of Award:

8-2018

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Watershed Sciences

Committee Chair(s)

Karin Kettenring (Committee Chair)

Committee

Karin Kettenring

Committee

Eugene Schupp

Committee

Karen Mock

Committee

Dennis Whigham

Committee

Thomas A. Monaco

Abstract

Biological invasions have adverse economic, cultural, and ecological effects worldwide. Among the most impactful in North America is the invasion of Phragmites australis (Phragmites), a large-scale clonal grass that rapidly colonizes wetlands. Phragmites crowds out native plants and alters habitat for native fauna. In doing so, Phragmites also alters human access to water resources and has adverse economic effects, including decreasing property value, inhibiting recreational use, and limiting populations of game species.

The efforts described in this dissertation are a component of a large, multidisciplinary effort to better understand the anthropogenic stressors to Chesapeake Bay, Maryland, at the land/water interface. Utah State University worked in collaboration with the Smithsonian Environmental Research Center and other academic and public organizations to address this problem from multiple directions. The diverse and extensive studies ranged from aquatic and avian faunal composition and submerged aquatic vegetation to our work on the invasive wetland grass, Phragmites.

Having assessed the existing literature and its shortcomings, we conducted a large-scale, long-term study of the effects of Phragmites removal on the Bay. By removing Phragmites from plots in select sub-estuaries of Chesapeake Bay through herbicide spraying, leaving associated plots intact, and comparing both with native wetland conditions, we sought to better understand herbicidal management of Phragmites and the potential for wetland plant community recovery. Although sprayings decreased the relative cover, stem diameters, and stem densities of Phragmites, we found that herbicide treatment alone was not adequate to restore native plant communities or significantly affect seedbank composition. Our results demonstrate the resilience of Phragmites and call for a diverse range of control measures, including mowing, grazing, burning to expose the seedbank to germination, and—if economics allow—active revegetation to establish the desired plant community composition.

This dissertation provides beneficial data for those who seek to manage Phragmites in wetland plant communities, but there is much work still to be done. The literature review, seedbank study, and community analysis included in this volume are components of a larger research program on Phragmites management. Future studies should, in particular, investigate revegetation and nutrient amelioration as means to recover pre-invasion vegetation.

Checksum

2a3c3722c379c46e2ac7b69ac6f633f3

Share

COinS