Date of Award:
5-2010
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
Leila J. Ladani
Committee
Leila J. Ladani
Committee
Thomas H. Fronk
Committee
Christine E. Hailey
Abstract
In a recent investigation conducted by the United States Air Force, the mechanical failure of the aileron lever, manufactured from 2014-T6 aluminum, caused the fatal mishap of a T-38 trainer aircraft. In general the locations of cracks are unknown and must be determined by simulation. In this study we propose to use a continuum damage modeling approach to determine the degradation and damage in a material as the number of cycles of loading increases. This approach successfully predicts the location of crack initiation, propagation path, and propagation rate. A stress-based model in conjunction with the successive initiation technique is utilized.
Successive initiation is based on the idea that damage will accrue in a material. Each element inside a new material will have a value of 0 damage assigned to it. Over time, the damage that occurs due to stresses on individual elements will add until the damage reaches a value of 1. At that point, failure of the element will occur. A code was developed in ANSYS that can draw, mesh, and apply appropriate forces on the aileron lever for successive runs. By using the S-N curve for the 2014-T6 aluminum material, the material damage constants are found. This stress-based damage model is then used to determine the state of damage in each element. Each time the elements are stressed, a particular amount of damage will occur. When an element reaches a specific amount of damage, ANSYS will "kill" the element, resulting in the element no longer adding to the stiffness matrix of the material.
Variability is a common occurrence in all aspects of engineering such as manufacturing, testing, and loading. A Monte Carlo simulation is used to determine the sensitivity of the results to variability of input parameters by ± 15%. Input parameters include loads, material properties and damage model constants. The Monte Carlo simulation indicates the only significant input in the initiation life of the material is the exponential value in the stress-based fatigue life equation. Material properties and load variations in the ± range will not significantly change the life prediction results.
Checksum
27eab58ac74690db2c301e939b639361
Recommended Citation
Gyllenskog, James D., "Fatigue Life Analysis of T-38 Aileron Lever Using a Continuum Damage Approach" (2010). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 747.
https://digitalcommons.usu.edu/etd/747
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .
Comments
This work made publicly available electronically on September 1, 2010.