Date of Award:
12-2019
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Civil and Environmental Engineering
Committee Chair(s)
Blake P. Tullis
Committee
Blake P. Tullis
Committee
Brian M. Crookston
Committee
Joseph A. Caliendo
Abstract
In recent years, magnitudes of flood estimates used in hydraulic design have increased for many reservoirs. Consequently, many existing spillways are now deficient as they do not meet current discharge capacity requirements. To rehabilitate existing, fixed-width spillways, labyrinth weirs are often viable solutions. For reservoir applications, arcing labyrinth weirs into the reservoir increases hydraulic efficiency. This results from better cycle orientation to the approaching flow field.
This study supplements available arced labyrinth weir hydraulic data by observing flow characteristics of three laboratory-scale physical models and two numerical (CFD) models. Physical model results provide head (energy)-discharge data and empirical coefficients for hydraulic design. Results also show that increasing the arc angle improves efficiency at H/P<0.3, where H/P is upstream piezometric head divided by weir height; after which, efficiency improvements diminish as downstream submergence also increases.
The purpose of the CFD analysis was to assess the appropriateness of CFD as a design tool for arced labyrinth weir head-discharge relationship development. The CFD model results found good agreement with the physical model data indicating CFD's usefulness as a hydraulic design tool; however, it is recommended that CFD models be calibrated to reliable laboratory or field data.
This study's data may be used, with sound engineering judgement, to aid in hydraulic design of arced labyrinth weirs
Checksum
8070d8f043b8edad429449f6a539fe0e
Recommended Citation
Thompson, Seth D., "Reservoir Applications of Arced Labyrinth Weirs" (2019). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 7700.
https://digitalcommons.usu.edu/etd/7700
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .