Date of Award:
8-2020
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Computer Science
Committee Chair(s)
Curtis Dyreson
Committee
Curtis Dyreson
Committee
John Edwards
Committee
Dan Watson
Abstract
The goal of this research is to learn about whole farm carbon models. A whole farm carbon model estimates the emissions of greenhouse gasses (GHGs) based on information for a farm. We analyzed two models, HOLOS whole-farm and COMET-Farm, by running the models on random inputs and building classifiers from the runs. HOLOS estimates GHG emissions for a particular year based on crop and animal agriculture input, while COMET-farm adds past and future farm management practices. Users of the models must manually enter farm data through a graphical user interface (GUI), which is a good method for a single farm, but makes it infeasible to calculate GHG emissions over hundreds to thousands of farms. So we automated the interface and generated random farm scenarios within ranges given by experts. We scraped the estimated carbon footprint from thousands of runs of the models and used several Regression algorithms to build predictive models that have high accuracy. By reverse engineering the whole-farm carbon models we were able to determine which farm management practices in each whole farm carbon model have the biggest impact on GHG emissions. This can help farmers and rural planners change farm management practices to decrease GHG emissions.
Checksum
a105988062837493bda0736d84ef66a6
Recommended Citation
Maheshwari, Aditi, "Automating and Analyzing Whole-Farm Carbon Models" (2020). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 7869.
https://digitalcommons.usu.edu/etd/7869
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .