Date of Award:
12-2022
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Physics
Committee Chair(s)
James Wheeler
Committee
James Wheeler
Committee
Oscar Varela
Committee
Maria Rodriguez
Committee
Mark Fels
Committee
Boyd Edwards
Abstract
There are four basic forces in nature: the electromagnetic force, which accounts for interactions of particles with charges; the weak force, which is responsible for radioactive decay; the strong force, which holds the particles inside a nucleus tightly bound together; and the gravitational force, which is responsible for keeping us on our beautiful planet, Earth and holding together our entire solar system. Physicists have been on the hunt for a theory that can single-handedly explain all these forces under the same underlying mathematical formulation. So far, physicists have suceeded in unifying the electromagnetic and weak forces in what is called the electroweak theory. Some ways are known to unify the electroweak and strong interactions using group theory, but the odd one out is really gravitational force. Gravity is explained successfully so far by Einstein’s general theory of relativity but it has seen limited quantum mechanical explanation. One possible route to full unification is string theory but we take an alternative approach. In this dissertation, we attempt to unify gravity with the electroweak interaction. We propose a graviweak theory based on a gauge field theory approach by harnessing the plethora of mathematical techniques found in biconformal gauge field theory. In this special kind of field theory, not only can we readily and easily get gravity, we simulteneously have a dual space that can accommodate the electroweak theory within the same formulation. We see that certain surprising properties of the electroweak theory such as the existence of isospin or its preference for left-handedness over right-handedness may have a natural explanation within biconformal theory.
Checksum
d448aba25d505fd8cf0ba9ad3cd7d129
Recommended Citation
Ukashat, Mubarak, "Graviweak Theory in Bicomformal Space" (2022). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 8614.
https://digitalcommons.usu.edu/etd/8614
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .