Date of Award:
5-2023
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
David Geller
Committee
David Geller
Committee
Randy Christensen
Committee
Matt Harris
Committee
Stephen Whitmore
Committee
Greg Droge
Committee
Doug Hunsaker
Abstract
Sustained actuator saturation is a common occurrence for missile engagements. The saturation nonlinearity creates some difficulty for high-fidelity linear analysis methods. This dissertation investigates three methods of modeling actuator saturation in an advanced linear analysis. The linear covariance tools from this dissertation run extremely fast and provide several advantages over other linear missile engagement analysis methods. First, a simulation is developed and validated for a target engagement scenario without actuator saturation. Next, saturations are introduced to the problem, along with the first analysis method: statistical linear covariance analysis. This method combines the augmented state linear covariance framework with the statistical linearization technique. The second method considered is tunable linear covariance analysis. Tunable linear covariance analysis utilizes a switching parameter to determine when to switch the dynamics of the problem. The final method is called event trigger linear covariance analysis. This method involves switching GN&C modes using a constraint equation and a covariance shaping matrix. All three analysis methods are validated using Monte Carlo methods, and statistical linear covariance analysis is found to be the most robust and accurate of the three methods. This method is utilized to rapidly analyze missile engagement performance under varying levels of saturation. The parameters of the analysis include guidance laws, sensor accuracy levels, target evasive maneuvers, and actuator responsiveness.
Checksum
1fde139f32d98222307249ce133f4dcf
Recommended Citation
Clawson, Jeffrey Scott, "Augmented State Linear Covariance Applications for Nonlinear Missile Engagements" (2023). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 8728.
https://digitalcommons.usu.edu/etd/8728
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .