Location
Denver, CO
Start Date
6-25-2019 12:00 AM
End Date
6-27-2019 12:00 AM
Description
Wave energy converters (WEC) are hydraulic structures that are used to harvest energy from oceans. This research explores a new concept of a WEC termed a Submerged Oscillating Water Column (SOWC). Numerical simulations using the Computational Fluid Dynamics (CFD) code Flow-3D and physical model tests were carried out at Idaho State University to assess the validity and efficiency of the proposed device. The SOWC device consists of two submerged chambers that are connected to allow airflow between the two as waves pass; ideally spaced at half a wavelength. The results of the CFD modeling for seventeen different geometries with linear waves were investigated. The model was validated with experimental tests in a flume and the efficiency of the device calculated. The influence of four parameters: water depth, wave height, period and the size of SOWC were investigated. The numerical CFD modeling indicates the ratio of water elevation movement inside the chambers can be up to 80% of wave height. The numerical and physical models indicate that the concept of the SOWC works.
Included in
Modeling of a Novel Submerged Oscillating Water Column (SOWC) Energy Harvester
Denver, CO
Wave energy converters (WEC) are hydraulic structures that are used to harvest energy from oceans. This research explores a new concept of a WEC termed a Submerged Oscillating Water Column (SOWC). Numerical simulations using the Computational Fluid Dynamics (CFD) code Flow-3D and physical model tests were carried out at Idaho State University to assess the validity and efficiency of the proposed device. The SOWC device consists of two submerged chambers that are connected to allow airflow between the two as waves pass; ideally spaced at half a wavelength. The results of the CFD modeling for seventeen different geometries with linear waves were investigated. The model was validated with experimental tests in a flume and the efficiency of the device calculated. The influence of four parameters: water depth, wave height, period and the size of SOWC were investigated. The numerical CFD modeling indicates the ratio of water elevation movement inside the chambers can be up to 80% of wave height. The numerical and physical models indicate that the concept of the SOWC works.