"Observational Evidence Confirms Modelling of the Long-Term Integrity o" by N. Kampman, A. Busch et al.
 

Document Type

Article

Journal/Book Title/Conference

Nature Communications

Volume

7

Publisher

Macmillan Publishers Limited

Publication Date

7-28-2016

Abstract

Storage of anthropogenic CO2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO2 escaping. Although natural CO2 reservoirs demonstrate that CO2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO2-bearing brines. This uncertainty poses a significant challenge to the risk assessment of geological carbon storage. Here we describe mineral reaction fronts in a CO2 reservoir-caprock system exposed to CO2 over a timescale comparable with that needed for geological carbon storage. The propagation of the reaction front is retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ~7 cm in ~105 years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO2.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 120
    • Policy Citations: 3
  • Usage
    • Downloads: 137
    • Abstract Views: 16
  • Captures
    • Readers: 173
  • Mentions
    • Blog Mentions: 2
    • News Mentions: 1
  • Social Media
    • Shares, Likes & Comments: 109
see details

Included in

Geology Commons

Share

COinS