Document Type
Article
Journal/Book Title/Conference
Journal of Geophysical Research
Volume
115
Issue
B12423
Publisher
American Geophysical Union
Publication Date
2010
First Page
1
Last Page
20
Abstract
We examine the relationships between borehole geophysical data and physical properties of fault‐related rocks within the San Andreas Fault as determined from data from the San Andreas Fault Observatory at Depth borehole. Geophysical logs, cuttings data, and drilling data from the region 3‐ to 4‐km measured depth of the borehole encompass the active part of the San Andreas Fault. The fault zone lies in a sequence of deformed sandstones, siltstone, shale, serpentinite‐bearing block‐in‐matrix rocks, and sheared phyllitic siltstone. The borehole geophysical logs reveal the presence of a low‐velocity zone from 3190 to 3410 m measured depth with Vp and Vs values 10–30% lower than the surrounding rocks and a 1–2 m thick zone of active shearing at 3301–3303 m measured depth. Seven low‐velocity excursions with increased porosity, decreased density, and mud‐gas kick signatures are present in the fault zone. Geologic data on grain‐scale deformation and alteration are compared to borehole data and reveal weak correlations and inverse relationships to the geophysical data. In places, Vp and Vs increase with grain‐scale deformation and alteration and decrease with porosity in the fault zone. The low‐velocity zone is associated with a significant lithologic and structural transition to low‐velocity rocks, dominated by phyllosilicates and penetratively foliated, sheared rocks. The zone of active shearing and the regions of low sonic velocity appear to be associated with clay‐rich rocks that exhibit fine‐scale foliation and higher porosities that may be a consequence of the fault‐related shearing of foliated and fine‐grained sedimentary rocks.
Recommended Citation
Jeppson, T. N., K. K. Bradbury, and J. P. Evans (2010), Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure, J. Geophys. Res., 115, B12423, doi:10.1029/2010JB007563.
Comments
Originally published by American Geophysical Union. Publisher's fulltext and PDF article available through Journal of Geophysical Research Solid Earth.