Date of Award
5-2008
Degree Type
Report
Degree Name
Master of Science (MS)
Department
Mathematics and Statistics
Committee Chair(s)
Mevin Hooten
Committee
Mevin Hooten
Abstract
Physical models in the hydrological sciences are often calibrated using methods that do not formally quantify uncertainty in the model parameters. Additionally, many competing hydrological models exist and are used to model the same processes. Considering existing mechanistic models of rainfall-run off in a statistical context can assist hydrologists in understanding the true physical process taking place. This paper introduces a data assimilation mixture model of runoff that yields statistical estimates of hydrological mode l parameters and predictions. This statistical model incorporates two commonly used hydrological models, each with strengths and weaknesses. The mixture framework allows comparisons between models as well as combines the strengths of both. Results from three implementations of the mixture model are summarized and additional generalizations of the models are suggested.
Recommended Citation
Flake, Darl D. II, "Mixtures of Truncated Normal Data Assimilation Models for Parameter Estimation and Prediction in Hydrological Systems" (2008). All Graduate Plan B and other Reports, Spring 1920 to Spring 2023. 1290.
https://digitalcommons.usu.edu/gradreports/1290
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .