Date of Award
5-2019
Degree Type
Report
Degree Name
Master of Science (MS)
Department
Mechanical and Aerospace Engineering
Committee Chair(s)
Stephen Whitmore
Committee
Stephen Whitmore
Committee
David Geller
Committee
Geordie Richards
Abstract
Chamber pressure, as it develops during rocket combustion, strongly correlates with many of the internal motor ballistics, including combustion stability, fuel regression rate, and mass flow. Chamber pressure is also an essential measurement for calculating achieved thrust coefficient and characteristic velocity. Due to the combustion environment hostility, sensing chamber pressure with high-fidelity presents a difficult measurement problem, especially for solid and hybrid rocket systems where combustion by-products contain high amounts of carbon and other sooty materials. These contaminants tend to deposit within the pneumatic tubing used to transmit pressure oscillations from the thrust chamber to the sensing transducer. Partially clogged transmission tubes exhibit significant response latency and damp high frequency pressure oscillations that may be of interest to the testers. A maximum-likelihood method for fitting a second order model to chamber pressure response is presented. The resulting model was used to reconstruct a high-fidelity motor response via optimal deconvolution. The method was applied to small hybrid-thruster results from three separate testing campaigns. Key performance parameters such as thrust coefficient, characteristic velocity, and specific impulse were re-calculated using the reconstructed data. Results were compared to the unreconstructed data, and are shown to exhibit consistently better agreement with theoretical predictions.
Recommended Citation
Zelesnik, Evan M., "Reconstruction of Attenuated Hybrid Rocket Motor Chamber Pressure Signals Using Maximum Likelihood Estimation and Optimal Deconvolution" (2019). All Graduate Plan B and other Reports, Spring 1920 to Spring 2023. 1389.
https://digitalcommons.usu.edu/gradreports/1389
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .