Date of Award
8-2022
Degree Type
Creative Project
Degree Name
Master of Science (MS)
Department
Mathematics and Statistics
Committee Chair(s)
Andreas Malmendier
Committee
Andreas Malmendier
Committee
James Cangelosi
Committee
David Brown
Abstract
Anxiety and mathematics come hand in hand for many individuals. This is due, in
part, to the fact that the only experience they have with mathematics is what some
mathematics educators refer to as "schoolmath," which uses a somewhat different
language than real mathematics. The language of schoolmath can cause individu-
als to have confusion and develop misconceptions related to several mathematical
concepts. One such concept is a fraction. In chapter one of this report, one possible
reason for this is discussed and a possible solution is purposed.
In chapter three of this report, genus-two curves admitting an elliptic involution
are related to pairs of genus-one curves. This classical work dates back to early 20th
century and is known as Jacobi reduction. Jacobians of genus-two curves can be
used to construct complex two-dimensional complex projective manifolds known
as Kummer surfaces. On the other hand, the defining coordinates and parameters of
elliptic curves and Kummer surfaces can be related to Jacobi θ-functions and Siegel
θ-functions, respectively. This result goes back to the seminal work of Mumford in
the 1980s. We use a geometric relation between elliptic curves and Kummer surfaces
to derive functional relations between θ-functions.
Recommended Citation
Spatig, Shantel, "Recognizing and Reducing Ambiguity in Mathematics Curriculum and Relations of θ-Functions in Genus One and Two: A Geometric Perspective" (2022). All Graduate Plan B and other Reports, Spring 1920 to Spring 2023. 1667.
https://digitalcommons.usu.edu/gradreports/1667
Included in
Algebraic Geometry Commons, Curriculum and Instruction Commons, Secondary Education Commons
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .