Date of Award
5-2012
Degree Type
Report
Degree Name
Master of Science (MS)
Department
Computer Science
Committee Chair(s)
Nicholas Flann
Committee
Nicholas Flann
Committee
Curtis Dyreson
Committee
Xiaojun Qi
Abstract
Decision making in natural systems, such as the body's immune response to a potential pathogen or a bacterial colony's initiation of fruiting due to food scarcity, is distributed over many cells that posses only local information, and not determined globally. Understanding how accurate decisions can be made in such systems where no individual decisions maker has complete information has important implications in distributed software and can provide insights into the biological evolution of complexity. In this work, the process of distributed decision making is modeled using the majority problem in cellular automata, and information theoretic measures of Kolmogorov complexity are applied to quantify information flow during the decision making process. Results show that (a) when the decision making process converges the information content of the dynamics quickly reaches a peak then decays to near-zero; (b) if the process does not converge and becomes chaotic, information content oscillates over a large unstable range; (c) extensive statistically significant differences exist in information flow dynamics between convergent and chaotic outcomes; and (d) there are small, but statistically significant differences in information flow dynamics between convergence to the incorrect answer. This last result supports the hypothesis that correct decision making maximized information flow among agents in distributed decision making.
Recommended Citation
Thakre, Akshay, "Information Flow in the Spatiotemporal Dynamics of Cellular Automata" (2012). All Graduate Plan B and other Reports, Spring 1920 to Spring 2023. 213.
https://digitalcommons.usu.edu/gradreports/213
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .
Comments
This work made publicly available electronically on November 5, 2012.