Date of Award
5-2017
Degree Type
Creative Project
Degree Name
Master of Science (MS)
Department
Mathematics and Statistics
Committee Chair(s)
Chris Corcoran
Committee
Chris Corcoran
Committee
Richard Cutler
Committee
Luis Gordillo
Abstract
Survival analysis methods are a mainstay of the biomedical fields but are finding increasing use in other disciplines including finance and engineering. A widely used tool in survival analysis is the Cox proportional hazards regression model. For this model, all the predicted survivor curves have the same basic shape, which may not be a good approximation to reality. In contrast the Random Survival Forests does not make the proportional hazards assumption and has the flexibility to model survivor curves that are of quite different shapes for different groups of subjects. We applied both techniques to a number of publicly available datasets and compared the fit of the two techniques across the datasets using the concordance index and prediction error curves. In this process we identified 'types of data' in which Random Survival Forests may be expected to outperform the Cox model.
Recommended Citation
Weathers, Brandon, "Comparison of Survival Curves Between Cox Proportional Hazards, Random Forests, and Conditional Inference Forests in Survival Analysis" (2017). All Graduate Plan B and other Reports, Spring 1920 to Spring 2023. 927.
https://digitalcommons.usu.edu/gradreports/927
Included in
Applied Statistics Commons, Biostatistics Commons, Statistical Methodology Commons, Statistical Models Commons, Survival Analysis Commons
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .