Automatic Metadata Generation & Evaluation
Document Type
Poster
Journal/Book Title/Conference
Special Interest Group for Information Retrieval
Publisher
Association for Computing Machinery
Publication Date
2002
First Page
401
Last Page
402
Abstract
The poster reports on a project in which we are investigating methods for breaking the human metadata-generation bottleneck that plagues Digital Libraries. The research question is whether metadata elements and values can be automatically generated from the content of educational resources, and correctly assigned to mathematics and science educational materials. Natural Language Processing and Machine Learning techniques were implemented to automatically assign values of the GEMgenerate metadata element set tofor learning resources provided by the Gateway for Education (GEM), a service that offers web access to a wide range of educational materials. In a user study, education professionals evaluated the metadata assigned to learning resources by either automatic tagging or manual assignment. Results show minimal difference in the eyes of the evaluators between automatically generated metadata and manually assigned metadata.
Recommended Citation
Liddy, E. D.; Allen, E.; Harwell, S.; Corieri, S.; Yilmazel, O.; Ozgencil, N. E.; Diekema, A.; McCracken, N.; Silverstein, J. and Sutton, S. Automatic Metadata Generation & Evaluation. In: Proceedings of the Special Interest Group for Information Retrieval. Tampere, Finland, 2002.
Comments
Originally published by the Association for Computing Machinery. Publisher's PDF available through remote link.