Document Type
Article
Journal/Book Title/Conference
Review of Educational Research
Volume
87
Issue
6
Publisher
AERA
Publication Date
12-2017
First Page
1042
Last Page
1081
Abstract
Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains. This leaves much quantitative scaffolding literature not covered by existing meta-analyses. To address this gap, this study used Bayesian network meta-analysis to synthesize within-subjects (pre–post) differences resulting from scaffolding in 56 studies. We generated the posterior distribution using 20,000 Markov Chain Monte Carlo samples. Scaffolding has a consistently strong effect across student populations, STEM (science, technology, engineering, and mathematics) disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional models (exception: inquiry-based learning and modeling visualization) and educational levels (exception: secondary education). Results also indicate some promising areas for future scaffolding research, including scaffolding among students with learning disabilities, for whom the effect size was particularly large (ḡ = 3.13).
Recommended Citation
Belland, Brian Robert; Walker, Andrew; and Kim, Nam Ju, "A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education" (2017). Instructional Technology and Learning Sciences Faculty Publications. Paper 629.
https://digitalcommons.usu.edu/itls_facpub/629
Included in
Educational Assessment, Evaluation, and Research Commons, Instructional Media Design Commons, Library and Information Science Commons