Document Type

Article

Journal/Book Title/Conference

PLoS One

Volume

20

Issue

6

Publisher

Public Library of Science

Publication Date

6-4-2025

Journal Article Version

Version of Record

First Page

1

Last Page

29

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

Mulberry leaf disease detection is vital for maintaining the health and productivity of mulberry crops. In this paper, a novel approach was proposed by integrating explainable artificial intelligence (XAI) techniques with a convolutional neural network (CNN) and vision transformer (ViT) for effective mulberry leaf disease classification with three disease classes. Initially, in this proposed CNN-ViT model, features are extracted using a customized CNN architecture, and then the extracted features are fed into ViT for leaf disease classification in a more streamlined approach. The CNN-ViT model achieved promising results with a projection dimension of 64, utilizing 8 heads and 8 transformer layers, yielding an accuracy of 95.60% with notable precision of 94.75%, recalls of 92.40%, and F1-scores of 93.45%. The proposed method also took 0.0017 seconds to predict an individual image. The accuracy of the proposed method was comparable to that of other state-of-the-art (SOTA) methods reported in the literature. Finally, Grad-CAM was utilized for detecting precise region of interest for diseased leaves, leaf spots, and leaf rust, providing interpretability and insights into the model’s decision-making process. This comprehensive approach demonstrates the effectiveness of explainable artificial intelligence (XAI) integration in the CNN-ViT model for mulberry leaf disease detection, paving the way for improved agricultural disease management strategies.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.