Document Type

Article

Journal/Book Title/Conference

SAMPE Journal

Volume

60

Issue

4

Publisher

Society for the Advancement of Material and Process Engineering

Publication Date

5-20-2024

Journal Article Version

Accepted Manuscript

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

First Page

16

Last Page

24

Abstract

Additive manufacturing (AM) or 3D printing of fiber-reinforced composites (FRCs) has garnered significant interests for its versatility in creating intricate parts and rapid prototyping due to cost-effectiveness. Although short fiber-reinforced thermoplastic composites are challenging to manufacture, their mechanical properties are enhanced. However, void formation during printing is a key issue, impacting mechanical properties and facilitating water ingress, affecting long-term durability. This work studies water diffusion characteristics and the associated hydro-aging of 3Dprinted short carbon fiber (SCF)/acrylonitrile butadiene styrene (ABS) composites with controlled water diffusion. Effects of material type (ABS and SCF/ABS), 3D printing path (horizontal and vertical filament orientation), and diffusion surface (uni-directional and bi-directional diffusion) on water diffusion coefficient and maximum water absorption level are characterized to ensure the long-term durability of 3D-printed ABS and SCF/ABS composites. Baseline representative volume element-based finite element (RVE-FE) diffusion models were developed based on microcomputed tomography (micro-CT) image analysis of each specimen to understand water diffusion characteristics. This work proves that the SCF/ABS composite is more resistive to hydro-aging than neat ABS due to the SCFs’ hydrophobic nature. SCF/ABS composites, while providing distinct advantages over pure ABS in terms of mechanical properties, could also be more effective against moist conditions.

Share

COinS