Low seasonal temperatures promote lifecycle synchronization

Document Type

Article

Journal/Book Title/Conference

Bulletin of Mathematical Biology

Volume

63

Publication Date

2001

First Page

573

Last Page

595

Abstract

In this paper we discuss how seasonal temperature variation and life-stage specific developmental thresholds that cause quiescence can synchronize the seasonal development of exothermic organisms. Using a simple aging model it is shown that minimal seasonal temperature variation and periods of quiescence during extreme temperature conditions are sufficient to establish stable, univoltine ovipositional cycles. Quiescence induced by life-stage specific developmental thresholds, in fact, promotes synchronous oviposition and emergence. The mountain pine beetle, an important insect living in extreme temperature conditions and showing no evidence of diapause, invites direct application of this model. Simulations using mountain pine beetle parameters are used to determine temperature regimes for which stable ovipositional cycles exist.

Share

COinS