Document Type
Article
Journal/Book Title/Conference
Algebraic & Geometric Topology
Volume
18
Issue
7
Publisher
Mathematical Sciences Publishers
Publication Date
12-11-2018
First Page
4329
Last Page
4358
Abstract
We construct a Hennings-type logarithmic invariant for restricted quantum sl (2) at a 2pth root of unity. This quantum group U is not quasitriangular and hence not ribbon, but factorizable. The invariant is defined for a pair: a 3–manifold M and a colored link L inside M. The link L is split into two parts colored by central elements and by trace classes, or elements in the 0th Hochschild homology of U, respectively. The two main ingredients of our construction are the universal invariant of a string link with values in tensor powers of U, and the modified trace introduced by the third author with his collaborators and computed on tensor powers of the regular representation. Our invariant is a colored extension of the logarithmic invariant constructed by Jun Murakami.
Recommended Citation
Beliakova, Anna; Blanchet, Christian; and Tebbs, Alexandra, "Logarithmic Hennings Invariants for Restricted Quantum sl (2)" (2018). Mathematics and Statistics Faculty Publications. Paper 245.
https://digitalcommons.usu.edu/mathsci_facpub/245
Comments
First published in Algebraic & Geometric Topology in Vol. 18 (2018), No. 7, published by Mathematical Sciences Publishers.