Document Type

Article

Journal/Book Title/Conference

Czechoslovak Mathematical Journal

Volume

69

Issue

4

Publisher

Akademie Ved Ceske Republiky, Matematicky Ustav

Publication Date

8-30-2019

First Page

1

Last Page

9

Abstract

Let m and n be positive integers, and let R = (r1, . . . , rm) and S = (s1, . . . , sn) be nonnegative integral vectors. Let A(R,S) be the set of all m × n (0, 1)-matrices with row sum vector R and column vector S. Let R and S be nonincreasing, and let F(R) be the m × n (0, 1)-matrix, where for each i, the ith row of F(R,S) consists of ri 1’s followed by (nri) 0’s. Let AA(R,S). The discrepancy of A, disc(A), is the number of positions in which F(R) has a 1 and A has a 0. In this paper we investigate linear operators mapping m × n matrices over the binary Boolean semiring to itself that preserve sets related to the discrepancy. In particular, we show that bijective linear preservers of Ferrers matrices are either the identity mapping or, when m = n, the transpose mapping.

Included in

Mathematics Commons

Share

COinS