Document Type
Article
Journal/Book Title/Conference
Journal of Biological Dynamics
Volume
17
Issue
1
Publisher
Taylor & Francis
Publication Date
3-15-2023
First Page
1
Last Page
14
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Abstract
We derive a stochastic epidemic model for the evolving density of infective individuals in a large population. Data shows main features of a typical epidemic consist of low periods interspersed without breaks of various intensities and duration. In our stochastic differential model, a novel reproductive term combines a factor expressing the recent notion of ‘attenuated Allee effect’ and a capacity factor is controlling the size of the process. Simulation of this model produces sample paths of the stochastic density of infectives, which behave much like long-time Covid-19 case data of recent years. Writing the process as a stochastic diffusion allows us to derive its stationary distribution, showing the relative time spent in low levels and in outbursts. Much of the behaviour of the density of infectives can be understood in terms of the interacting drift and diffusion coefficient processes, or, alternatively, in terms of the balance between noise level and the attenuation parameter of the Allee effect. Unexpected results involve the effect of increasing overall noise variance on the density of infectives, in particular on its level-crossing function.
Recommended Citation
Luis F. Gordillo, Priscilla E. Greenwood & Dana Strong (2023) Epidemic highs and lows: a stochastic diffusion model for active cases, Journal of Biological Dynamics, 17:1, DOI: 10.1080/17513758.2023.2189001