Non-Factorizable Separable Systems and Higher-Order Symmetries of the Dirac Operator

Document Type

Article

Journal/Book Title/Conference

Proc. R. Soc. Lond.

Volume

428

Publication Date

1990

First Page

229

Last Page

249

Abstract

It is shown that there exist separable systems for the Dirac operator on four-dimensional lorentzian spin manifolds that are not factorizable in the sense of Miller. The symmetry operators associated to these new separable systems are of higher order than the Dirac operator. They are characterized in the second-order case in terms of quadratic first integrals of the geodesic flow satisfying additional invariant conditions.

Share

COinS