Document Type

Article

Journal/Book Title/Conference

LWT- Food Science and Technology

Volume

83

Publisher

Academic Press

Publication Date

5-6-2017

First Page

184

Last Page

192

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

The effect of shear work input on the microstructure, fat particle size and creep behavior of model Mozzarella type cheeses was studied. Cheese samples were prepared in a twin screw cooker at 70 °C by mixing protein and fat phases together with different amounts of shear work input. Major changes in cheese structure were observed while working at 150 rpm and 250 rpm screw speeds. Confocal microstructures plus macroscopic observations showed systematic changes in structure with increased shear work inputs with unmixed buttery liquid observed at kg−1, typical Mozzarella type microstructures (elongated fat-serum channels) at 6–15 kJ kg−1 and homogeneously distributed, small size fat droplets at >58 kJ kg−1. At very high shear work inputs, > 75 kJ kg−1, striations or anisotropy in the microstructures had disappeared and small micro-cracks were evident. A 4-element Burger's model was found adequate for fitting the creep data of model cheese at 70 °C but a 6-element model was required at 20 °C. As shear work input increased retarded compliance decreased and zero shear viscosity increased indicating the more elastic behavior of the cheeses with higher shear work input. Changes in the protein matrix appear to be the main reason for increased elastic behavior.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.