All Physics Faculty Publications
Document Type
Article
Journal/Book Title/Conference
Journal of Geophysical Research: Space Physics
Volume
101
Issue
A1
Publisher
American Geophysical Union
Publication Date
1996
First Page
323
Last Page
333
Abstract
A quantitative model-observation comparison of multiple polar cap arcs has been conducted by using a time-dependent theoretical model of polar cap arcs. In particular, the electrodynamical features of multiple polar cap arcs with various spacings are simulated and the results are compared with the images obtained from the All-Sky Intensified Photometer at Qaanaaq. The results show that the observed and simulated arcs are quite similar, both spatially and temporally. The results support the theory proposed by Zhu et al. [1993a, 1994b] that the structure of polar cap arcs is mainly determined by the magnetosphere-ionosphere (M-I) coupling processes and that the spacing of multiple polar cap arcs is closely related to the hardness of the primary magnetospheric precipitation. It is found that for the multiple polar cap arcs with both narrow and wide spacings, the associated field-aligned currents are mainly closed by Pedersen currents. It is also found that a hard precipitation can lead to a highly structured secondary arc because of the nonlinear M-I coupling processes.
Recommended Citation
Zhu, L., C. E. Valladares, J. J. Sojka, R. W. Schunk, and D. J. Crain (1996), Model-observation comparison study of multiple polar cap arcs, J. Geophys. Res., 101(A1), 323–333, doi:10.1029/95JA02758.
Comments
Originally published by the American Geophysical Union. Publisher's PDF available thorough the Journal of Geophysical Research: Space Physics.