All Physics Faculty Publications
Document Type
Article
Journal/Book Title/Conference
Physics of Plasmas
Author ORCID Identifier
Joseph R. Jepson: https://orcid.org/0000-0002-9992-4056
Chris C. Hegna: https://orcid.org/0000-0002-5446-1190
Volume
28
Issue
8
Publisher
A I P Publishing LLC
Publication Date
8-3-2021
First Page
1
Last Page
13
Abstract
In this work, continuum kinetic formulations are employed as a mechanism to include closure physics in an extended magnetohydrodynamics model. Two continuum kinetic approaches have been implemented in the plasma fluid code NIMROD [Sovinec et al., “Nonlinear magnetohydrodynamics with high-order finite elements,” J. Comput. Phys. 195, 355 (2004)] including a Chapman–Enskog-like (CEL) formulation and a more conventional δf approach. Ion kinetic closure schemes are employed to describe the neoclassical flow properties in axisymmetric toroidal geometry. In particular, predictions for steady-state values of poloidal flow profiles in tokamak geometry are provided using both the δf formulation and two different solution techniques for the CEL approach. These results are benchmarked against analytic theory predictions as well as results from the drift kinetic code DK4D. The continuum kinetic formulations employed here show agreement with both the analytic theory and DK4D results, and offer a novel velocity space representation involving higher-order finite elements in pitch angle.
Recommended Citation
J. R. Jepson, C. C. Hegna, E. D. Held, J. A. Spencer, and B. C. Lyons , "Benchmarking NIMROD continuum kinetic formulations through the steady-state poloidal flow", Physics of Plasmas 28, 082503 (2021) https://doi.org/10.1063/5.0054978
Comments
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in J. R. Jepson, C. C. Hegna, E. D. Held, J. A. Spencer, and B. C. Lyons , "Benchmarking NIMROD continuum kinetic formulations through the steady-state poloidal flow", Physics of Plasmas 28, 082503 (2021) https://doi.org/10.1063/5.0054978 and may be found at https://aip.scitation.org/doi/abs/10.1063/5.0054978.