Document Type

Article

Journal/Book Title/Conference

Geophysical Research Letters

Volume

51

Issue

10

Publisher

Wiley-Blackwell Publishing, Inc.

Publication Date

5-11-2024

Journal Article Version

Version of Record

First Page

1

Last Page

8

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

Precipitation exhibits a pronounced seasonal cycle, of which the phase and amplitude are closely associated with water resource management. While previous studies suggested an emerged delaying phase in the past decades, whether the amplified amplitude has emerged is controversial. Using multiple observational data sets and climate simulations, here we show that the amplification of precipitation annual cycle has emerged in most global land areas since the 1980s, especially in the tropics. These amplifications are mainly driven by anthropogenic emissions, and will be further intensified by 17.6% in the future (2081–2100) under high emission scenario (Shared Socioeconomic Pathways, SSP585), and limited to 7.2% under SSP126 scenario, relative to the historical period (1982–2014). Precipitation seasonality will be amplified by 4.2% for each 1°C of global warming, which is seen in all emission scenarios. The mitigation of lower emissions is helpful for alleviating the amplification of precipitation seasonality in a warming world.

Included in

Life Sciences Commons

Share

COinS