Document Type

Article

Journal/Book Title/Conference

Journal of Environmental Quality

Volume

48

Issue

4

Publisher

American Society of Agronomy, Inc.

Publication Date

6-13-2019

First Page

899

Last Page

906

Abstract

Agricultural P loss from fields is an issue due to water quality degradation. Better information is needed on the P loss in runoff from dairy manure applied in winter and the ability to reliably simulate P loss by computer models. We monitored P in runoff during two winters from chisel-tilled and no-till field plots that had liquid dairy manure applied in December or January. Runoff total P was dominated by nondissolved forms when soils were bare and unfrozen. Runoff from snow-covered, frozen soils had much less sediment and sediment-related P, and much more dissolved P. Transport of manure solids was greatest when manure was applied on top of snow and runoff shortly after application was caused by snowmelt. Dissolved P concentrations in runoff were greater when manure was applied on top of snow because manure liquid remained in the snowpack and allowed more P to be available for loss. Dissolved runoff P also increased as the amount of rain or snowmelt that became runoff (runoff ratio) increased. The SurPhos manure P runoff model reliably simulated these processes to provide realistic predictions of dissolved P in runoff from surface manure. Overall, for liquid dairy manure applied in winter, dissolved P concentrations in runoff can be decreased if manure is applied onto bare, unfrozen soil, or if runoff ratio can be reduced, perhaps through greater soil surface roughness from fall tillage. Both management approaches will allow more manure P to infiltrate into soil and less move in runoff. SurPhos is a tool that can reliably evaluate P loss for different management and policy scenarios for winter manure application.

Share

COinS