DigitalCommons@USU - Student Research Symposium: Wormholes - Gates to the Stars?
 

Class

Article

Department

Physics

Presentation Type

Poster Presentation

Abstract

One of the most consistently fascinating results of Albert Einstein’s theory of general relativity is the prediction of wormholes – astronomical objects which are, among other things, capable of serving as a connection between two distant regions of space. The simplest class of wormholes are Schwarzschild wormholes – wormholes that behave as non-rotating, non-charged black holes, except that the event horizon serves as a connection to another wormhole elsewhere, instead of a point of no return.

This research presentation analyzes the attributes that make a Schwarzschild wormhole unsuitable for human travel, and examines the conditions that would have to hold for human travel through a wormhole to be possible. Following the work of Morris and Thorne, we examine the constraints that these conditions place on the metric and on the stress-energy tensor. It is shown that these constraints require a configuration of matter that violates accepted energy conditions, and is therefore likely to be non-physical. Avenues for further research with the potential to minimize these violations are outlined.

Start Date

4-14-2016 10:30 AM

End Date

4-14-2016 11:45 AM

Included in

Physics Commons

Share

COinS
 
Apr 14th, 10:30 AM Apr 14th, 11:45 AM

Wormholes - Gates to the Stars?

One of the most consistently fascinating results of Albert Einstein’s theory of general relativity is the prediction of wormholes – astronomical objects which are, among other things, capable of serving as a connection between two distant regions of space. The simplest class of wormholes are Schwarzschild wormholes – wormholes that behave as non-rotating, non-charged black holes, except that the event horizon serves as a connection to another wormhole elsewhere, instead of a point of no return.

This research presentation analyzes the attributes that make a Schwarzschild wormhole unsuitable for human travel, and examines the conditions that would have to hold for human travel through a wormhole to be possible. Following the work of Morris and Thorne, we examine the constraints that these conditions place on the metric and on the stress-energy tensor. It is shown that these constraints require a configuration of matter that violates accepted energy conditions, and is therefore likely to be non-physical. Avenues for further research with the potential to minimize these violations are outlined.