Sustainable Water Management Under Climate Uncertainty
Location
ECC 216 - Auditorium
Start Date
3-29-2017 10:00 AM
End Date
3-29-2017 10:30 AM
Description
Abstract:
Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. To address these challenges, new problem solving approaches are required that acknowledge uncertainties, incorporate best available information, and link engineering design principles, typically based on determinism, with our best geoscience-based understanding of planetary change. In this presentation, we present and demonstrate a framework for developing water planning and management strategies that are resilient in the face of future uncertainties and our limited ability to anticipate the future. The approach begins with stakeholder engagement and decision framing to elicit relevant context, uncertainties, choices and connections that drive planning and serve as an entry point to exploring possible futures. The result is the development of water strategies that are informed by the best available predictive information and designed to perform well over a future of change. Examples from around the world are presented to illustrate the methodology.
Sustainable Water Management Under Climate Uncertainty
ECC 216 - Auditorium
Abstract:
Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. To address these challenges, new problem solving approaches are required that acknowledge uncertainties, incorporate best available information, and link engineering design principles, typically based on determinism, with our best geoscience-based understanding of planetary change. In this presentation, we present and demonstrate a framework for developing water planning and management strategies that are resilient in the face of future uncertainties and our limited ability to anticipate the future. The approach begins with stakeholder engagement and decision framing to elicit relevant context, uncertainties, choices and connections that drive planning and serve as an entry point to exploring possible futures. The result is the development of water strategies that are informed by the best available predictive information and designed to perform well over a future of change. Examples from around the world are presented to illustrate the methodology.
Comments
Casey Brown - University of Massachusetts - Department of Civil and Environmental Engineering
Bio: Casey Brown is an Associate Professor of the Department of Civil and Environmental Engineering at the University of Massachusetts. His areas of research include hydroclimatologic variability and change; climate risk management in infrastructure systems; water, climate, and economic development; and sustainable water resources planning and management.