Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and Mesospheric Temperature Mapper measurements at ALOMAR, Norway (69°N)

Katrina Bossert, University of Colorado Boulder
David C. Fritts, GATS, Inc.
Pierre-Dominique Pautet, Utah State University
Michael J. Taylor, Utah State University
Bifford P. Williams, GATS, Inc.
William R. Pendleton Jr., Utah State University

Abstract

New measurements at the ALOMAR observatory in northern Norway (69°N, 16°E) using the Weber sodium lidar and the Advanced Mesospheric Temperature Mapper (AMTM) allow for a comprehensive investigation of a gravity wave (GW) event on 22 and 23 January 2012 and the complex and varying propagation environment in which the GW was observed. These observational techniques provide insight into the altitude ranges over which a GW may be evanescent or propagating and enable a clear distinction in specific cases. Weber sodium lidar measurements provide estimates of background temperature, wind, and stability profiles at altitudes from ~78 to 105 km. Detailed AMTM temperature maps of GWs in the OH emission layer together with lidar measurements quantify estimates of the observed and intrinsic GW parameters centered near 87 km. Lidar measurements of sodium densities also allow more precise identification of GW phase structures extending over a broad altitude range. We find for this particular event that the extent of evanescent regions versus regions allowing GW propagation can vary largely over a period of hours and significantly change the range of altitudes over which a GW can propagate.