Session

Technical Session V: Lessons Learned - In Success and Failure

Abstract

The launch and deployment of picosatellites from the Stanford University OPAL microsatellite in February 2000 demonstrate the feasibility and practicability of a new age of space experimentation. Two of the six picosatellites deployed from OPAL were built by The Aerospace Corporation in El Segundo, CA and demonstrated new space testing of MEMS RF switches and intersatellite and ground communication with low power wireless radios. These picosatellites weighting less than one kilogram with dimensions of 4x3x1 inch were built as test platforms for DARPA and were constructed and delivered for flight in less than nine months. From this experience, a new generation of picosats called CubeSat is being developed by a number of organizations and universities to accelerate opportunities with small, low construction cost, low launch cost space experiment platforms. California Polytechnic State University at San Luis Obispo, CA is developing launcher tubes that can be part of a satellite or attached to any orbiting platform to launch from 1-3 CubeSats per tube. These tubes will contain CubeSats of 1-2 kilograms weight and approximately 4-inch cube shape. This size as compared to the picosatellites launched on OPAL provide better surfaces for practical solar power generation, physical size for components and a shape that provides better space thermal stability. A consortium of potential CubeSat developers is now wide ranging with universities from Japan, New Zealand, the US, amateur radio clubs and industry participants. Potential launch opportunities exist with the Russian Dnepr (SS-18) about twice/year, with the OSP (Minotaur) every 18 months and possible 100 km altitude orbits from the second stage of Delta launches. This paper will review the OPAL picosatellite launch and performance, the launcher being built for the CubeSat, the development and payloads of CubeSat developers and cost and timing of launch opportunities.

Share

COinS
 
Aug 23rd, 4:44 PM

CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation

The launch and deployment of picosatellites from the Stanford University OPAL microsatellite in February 2000 demonstrate the feasibility and practicability of a new age of space experimentation. Two of the six picosatellites deployed from OPAL were built by The Aerospace Corporation in El Segundo, CA and demonstrated new space testing of MEMS RF switches and intersatellite and ground communication with low power wireless radios. These picosatellites weighting less than one kilogram with dimensions of 4x3x1 inch were built as test platforms for DARPA and were constructed and delivered for flight in less than nine months. From this experience, a new generation of picosats called CubeSat is being developed by a number of organizations and universities to accelerate opportunities with small, low construction cost, low launch cost space experiment platforms. California Polytechnic State University at San Luis Obispo, CA is developing launcher tubes that can be part of a satellite or attached to any orbiting platform to launch from 1-3 CubeSats per tube. These tubes will contain CubeSats of 1-2 kilograms weight and approximately 4-inch cube shape. This size as compared to the picosatellites launched on OPAL provide better surfaces for practical solar power generation, physical size for components and a shape that provides better space thermal stability. A consortium of potential CubeSat developers is now wide ranging with universities from Japan, New Zealand, the US, amateur radio clubs and industry participants. Potential launch opportunities exist with the Russian Dnepr (SS-18) about twice/year, with the OSP (Minotaur) every 18 months and possible 100 km altitude orbits from the second stage of Delta launches. This paper will review the OPAL picosatellite launch and performance, the launcher being built for the CubeSat, the development and payloads of CubeSat developers and cost and timing of launch opportunities.