Session

Technical Session V: Forecast for the Future

Abstract

The Venus Entry Probe study is one of ESA's technology reference studies. It aims to identify; the technologies required to develop a low-cost, science-driven mission for in-situ exploration of the atmosphere of Venus, and the philosophy that can be adopted. The mission includes a science gathering spacecraft in an elliptical polar Venus orbit, a relay satellite in highly elliptical Venus orbit, and an atmospheric entry probe delivering a long duration aerobot which will drop several microprobes during its operational phase. The atmospheric entry sequence is initiated at 120 km altitude and an entry velocity of 9.8 kms-1. Once the velocity has reduced to 15 ms-1 the aerobot is deployed. This consists of a gondola and balloon and has a floating mass of 32 kg (which includes 8 kg of science instruments and microprobes). To avoid Venus’ crushing surface pressure and high temperature an equilibrium float altitude of around 55 km has been baselined. The aerobot will circumnavigate Venus several times over a 22-day period analysing the Venusian middle cloud layer. Science data will be returned at 2.5 kbps over the mission duration. At scientifically interesting locations 15 drop-sondes will be released. This paper focuses on the final mission design with particular emphasis on system level trade-offs including the balloon and pressurisation system, communications architecture, power system, design for mission lifetime in a hostile and acidic environment. It discusses the system design, design drivers and presents an overview of the innovative missionenabling and mission-enhancing technologies.

V-4.pdf (18861 kB)
Presentation Slides

Share

COinS
 
Aug 9th, 5:14 PM

Mission and System Design of a Venus Entry Probe and Aerobot

The Venus Entry Probe study is one of ESA's technology reference studies. It aims to identify; the technologies required to develop a low-cost, science-driven mission for in-situ exploration of the atmosphere of Venus, and the philosophy that can be adopted. The mission includes a science gathering spacecraft in an elliptical polar Venus orbit, a relay satellite in highly elliptical Venus orbit, and an atmospheric entry probe delivering a long duration aerobot which will drop several microprobes during its operational phase. The atmospheric entry sequence is initiated at 120 km altitude and an entry velocity of 9.8 kms-1. Once the velocity has reduced to 15 ms-1 the aerobot is deployed. This consists of a gondola and balloon and has a floating mass of 32 kg (which includes 8 kg of science instruments and microprobes). To avoid Venus’ crushing surface pressure and high temperature an equilibrium float altitude of around 55 km has been baselined. The aerobot will circumnavigate Venus several times over a 22-day period analysing the Venusian middle cloud layer. Science data will be returned at 2.5 kbps over the mission duration. At scientifically interesting locations 15 drop-sondes will be released. This paper focuses on the final mission design with particular emphasis on system level trade-offs including the balloon and pressurisation system, communications architecture, power system, design for mission lifetime in a hostile and acidic environment. It discusses the system design, design drivers and presents an overview of the innovative missionenabling and mission-enhancing technologies.