Session

Technical Session IV: Future Missions 2

Abstract

Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn – dusk, sun synchronous polar orbit on March 22, 2006. The spacecraft were maintained in a “pearls on a string” constellation with controlled spacing ranging from just over 5000 km down to under 50 km. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG). Although the short 90-day mission was designed to flight validate new technologies, the constellation mission returned high quality multi-point magnetic field data through the Earth’s dynamic ionospheric current systems. These data allow us to separate spatial versus temporal structures of auroral field-aligned currents over a wide range of spatial (~ 50-4000 km) and temporal (~ 5 s-10 min) scales. The ST5 mission was designed as a pathfinder for future Heliophysics constellation missions making particles and fields measurements over large volumes of Geospace. Based on the success of ST5, we are developing the concept of a new constellation mission, called Magnetospheric Convection Explorer (CONVEX), using ~ 10 small ST5-class spacecraft, distributed in local time around the Earth to complement the THEMIS mission’s radial deployment. The science approach is to generate the first global “images” of magnetospheric convection. This will allow definitive determinations of how major types of solar events drive specific space weather response modes in the near Earth environment.

SSC07-IV-6.pdf (1831 kB)
Presentation Slides

Share

COinS
 
Aug 14th, 11:45 AM

Space Technology 5 – Enabling Future Constellation Missions Using Micro-Satellites for Space Weather

Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn – dusk, sun synchronous polar orbit on March 22, 2006. The spacecraft were maintained in a “pearls on a string” constellation with controlled spacing ranging from just over 5000 km down to under 50 km. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG). Although the short 90-day mission was designed to flight validate new technologies, the constellation mission returned high quality multi-point magnetic field data through the Earth’s dynamic ionospheric current systems. These data allow us to separate spatial versus temporal structures of auroral field-aligned currents over a wide range of spatial (~ 50-4000 km) and temporal (~ 5 s-10 min) scales. The ST5 mission was designed as a pathfinder for future Heliophysics constellation missions making particles and fields measurements over large volumes of Geospace. Based on the success of ST5, we are developing the concept of a new constellation mission, called Magnetospheric Convection Explorer (CONVEX), using ~ 10 small ST5-class spacecraft, distributed in local time around the Earth to complement the THEMIS mission’s radial deployment. The science approach is to generate the first global “images” of magnetospheric convection. This will allow definitive determinations of how major types of solar events drive specific space weather response modes in the near Earth environment.