Session
Session 7: Science / Mission Payloads II
Abstract
The Starling series of demonstration missions will test technologies required to achieve affordable, distributed spacecraft (“swarm”) missions that: are scalable to at least 100 spacecraft for applications that include synchronized multipoint measurements; involve closely coordinated ensembles of two or more spacecraft operating as a single unit for interferometric, synthetic aperture, or similar sensor architectures; or use autonomous or semi-autonomous operation of multiple spacecraft functioning as a unit to achieve science or other mission objectives with low-cost small spacecraft. Starling1 will focus on developing technologies that enable scalability and deep space application. The mission goals include the demonstration of a Mobile Ad-hoc NETwork (MANET) through an in-space communication experiment and vision based relative navigation through the Starling Formation-flying Optical eXperiment (StarFOX).
Starling1: Swarm Technology Demonstration
The Starling series of demonstration missions will test technologies required to achieve affordable, distributed spacecraft (“swarm”) missions that: are scalable to at least 100 spacecraft for applications that include synchronized multipoint measurements; involve closely coordinated ensembles of two or more spacecraft operating as a single unit for interferometric, synthetic aperture, or similar sensor architectures; or use autonomous or semi-autonomous operation of multiple spacecraft functioning as a unit to achieve science or other mission objectives with low-cost small spacecraft. Starling1 will focus on developing technologies that enable scalability and deep space application. The mission goals include the demonstration of a Mobile Ad-hoc NETwork (MANET) through an in-space communication experiment and vision based relative navigation through the Starling Formation-flying Optical eXperiment (StarFOX).