Session
Session 7: Advanced Concepts II
Abstract
A new method for attitude determination utilizing color earth images taken with COTS visible light camera is presented. The traditional earth camera has been used for coarse attitude determination by detecting the edge of the earth, and therefore it can only provide coarse and 2-axis information. In contrast, our method recognizes the ground pattern with an accuracy of sub-degrees and can provide 3-axis attitude information by comparing the detected ground pattern and the global map. Moreover, this method has advantages in the size, mass and cost of the detector system which consists of a cheap optical color camera and a single board computer. To demonstrate the method in space, we have developed a sensor system named “Deep Learning Attitude Sensor (DLAS)”. DLAS uses COTS camera modules and single board computers to reduce the cost. The obtained images are promptly analyzed with a newly developed real-time image recognition algorithms.
Development of Attitude Sensor using Deep Learning
A new method for attitude determination utilizing color earth images taken with COTS visible light camera is presented. The traditional earth camera has been used for coarse attitude determination by detecting the edge of the earth, and therefore it can only provide coarse and 2-axis information. In contrast, our method recognizes the ground pattern with an accuracy of sub-degrees and can provide 3-axis attitude information by comparing the detected ground pattern and the global map. Moreover, this method has advantages in the size, mass and cost of the detector system which consists of a cheap optical color camera and a single board computer. To demonstrate the method in space, we have developed a sensor system named “Deep Learning Attitude Sensor (DLAS)”. DLAS uses COTS camera modules and single board computers to reduce the cost. The obtained images are promptly analyzed with a newly developed real-time image recognition algorithms.