Session
Session 10: A Look Back: Lessons Learned
Abstract
The pointing accuracy and stabilization property of the payload of a satellite depends on performance of attitude determination and control system (ADCS). An essential role of the ADCS is to stabilize the spacecraft in early operation stage and in the presence of anomalies. During this stage, the satellite may be subject to tumbling and a high-reliability method is deemed important to recover the satellite from this stage into its normal operation stage. In the paper, the use of magnetometer data and radio signal characteristics is investigated with the goal of determining the satellite tumbling rate confidently. The proposed method is applied to the PHOENIX CubeSat, which is a CubeSat that is developed by National Cheng Kung University, Taiwan as a part of the QB50 project, at its early orbit stage.
Analysis of Tumbling Motions by Combining Telemetry Data and Radio Signal
The pointing accuracy and stabilization property of the payload of a satellite depends on performance of attitude determination and control system (ADCS). An essential role of the ADCS is to stabilize the spacecraft in early operation stage and in the presence of anomalies. During this stage, the satellite may be subject to tumbling and a high-reliability method is deemed important to recover the satellite from this stage into its normal operation stage. In the paper, the use of magnetometer data and radio signal characteristics is investigated with the goal of determining the satellite tumbling rate confidently. The proposed method is applied to the PHOENIX CubeSat, which is a CubeSat that is developed by National Cheng Kung University, Taiwan as a part of the QB50 project, at its early orbit stage.