Session

Session VI: Communications

Location

Utah State University, Logan, UT

Abstract

CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT) is a demonstration of precision ground-to-space time-transfer using a laser link to an orbiting CubeSat. The University of Florida-led mission is a collaboration with the NASA Ames Research Center. The 1U optical time-transfer payload was designed and built by the Precision Space Systems Lab at the University of Florida. The payload was integrated with a NASA Ames NOdeS-derived spacecraft bus to form a 3U spacecraft. The CHOMPTT satellite was successfully launched into low Earth orbit on 16 December 2018 on NASA’s ELaNa XIX mission using the Rocket Lab USA Electron vehicle. Here we describe the mission and report on the status of this unique technology demonstration. We use two satellite laser ranging facilities located at the Kennedy Space Center and Mount Stromlo, Australia to transmit nanosecond, 1064 nm laser pulses to the CHOMPTT CubeSat. These pulses are timed with an atomic clock on the ground and are detected by an avalanche photodetector on CHOMPTT. An event timer records the arrival time with respect to one of the two on-board chip-scale atomic clocks with an accuracy of 200 ps (6cm light-travel time). At the same time, a retroreflector returns the transmitted beam back to the ground. By comparing the transmitted and received times on the ground and the arrival time of the pulses at the CubeSat, the time difference between the ground and space clocks can be measured. This compact, power efficient and secure synchronization technology will enable advanced space navigation, communications, networking, and distributed aperture telescopes in the future.

Share

COinS
 
Aug 6th, 5:00 PM

Preliminary Results from the CHOMPTT Laser Time-Transfer Mission

Utah State University, Logan, UT

CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT) is a demonstration of precision ground-to-space time-transfer using a laser link to an orbiting CubeSat. The University of Florida-led mission is a collaboration with the NASA Ames Research Center. The 1U optical time-transfer payload was designed and built by the Precision Space Systems Lab at the University of Florida. The payload was integrated with a NASA Ames NOdeS-derived spacecraft bus to form a 3U spacecraft. The CHOMPTT satellite was successfully launched into low Earth orbit on 16 December 2018 on NASA’s ELaNa XIX mission using the Rocket Lab USA Electron vehicle. Here we describe the mission and report on the status of this unique technology demonstration. We use two satellite laser ranging facilities located at the Kennedy Space Center and Mount Stromlo, Australia to transmit nanosecond, 1064 nm laser pulses to the CHOMPTT CubeSat. These pulses are timed with an atomic clock on the ground and are detected by an avalanche photodetector on CHOMPTT. An event timer records the arrival time with respect to one of the two on-board chip-scale atomic clocks with an accuracy of 200 ps (6cm light-travel time). At the same time, a retroreflector returns the transmitted beam back to the ground. By comparing the transmitted and received times on the ground and the arrival time of the pulses at the CubeSat, the time difference between the ground and space clocks can be measured. This compact, power efficient and secure synchronization technology will enable advanced space navigation, communications, networking, and distributed aperture telescopes in the future.