Session

Session VI: Ground, Software and Tools

Location

Utah State University, Logan, UT

Abstract

LeoLabs demonstrates that small satellites, including 1U CubeSats and smaller, are well-tracked to high accuracy by its worldwide network of phased array radars. With its network of two operations radars (valid as of June 2019), LeoLabs is able to provide high-precision ephemeris services for 1U and sub-1U satellites. Roughly 95% of the time, tracking is maintained to better than 1 km at time of estimation (these uncertainties grow when propagating the states). Approximately 50% of the time, these state estimates are better than 200 meters. The quality of the fitted orbits will improve as new LeoLabs radar sites are brought online. Precision tracking services are provided by LeoLabs as a commercial service to small spacecraft operators. Such services are also valuable for regulatory purposes (where detectability and trackability are concerns), for providing backup tracking should GPS not be available, and for safety enhancements by having smaller covariances in instances of potential conjunctions with other satellites.

Share

COinS
 
Aug 4th, 11:30 AM

Commercial Space Tracking Services for Small Satellites

Utah State University, Logan, UT

LeoLabs demonstrates that small satellites, including 1U CubeSats and smaller, are well-tracked to high accuracy by its worldwide network of phased array radars. With its network of two operations radars (valid as of June 2019), LeoLabs is able to provide high-precision ephemeris services for 1U and sub-1U satellites. Roughly 95% of the time, tracking is maintained to better than 1 km at time of estimation (these uncertainties grow when propagating the states). Approximately 50% of the time, these state estimates are better than 200 meters. The quality of the fitted orbits will improve as new LeoLabs radar sites are brought online. Precision tracking services are provided by LeoLabs as a commercial service to small spacecraft operators. Such services are also valuable for regulatory purposes (where detectability and trackability are concerns), for providing backup tracking should GPS not be available, and for safety enhancements by having smaller covariances in instances of potential conjunctions with other satellites.