Session
Swifty Session I
Abstract
National Aeronautics and Space Administration (NASA) CubeSat/SmallSat missions are expected to grow rapidly in the next decade. As the number of spacecraft on a ground network grows, employing higher data rates could reduce loading by reducing the contact time per day required. CubeSats also need to communicate directly to earth from space from longer distances than low earth orbit (LEO). These challenges motivate the need for bandwidth and power efficient modulation and coding techniques.
Today, Digital Video Broadcast, Satellite Second Generation (DVB-S2) is a communications standard for larger satellites. DVB-S2 uses power and bandwidth efficient modulation and coding techniques to deliver performance approaching Radio Frequency (RF) channel theoretical limits. NASA’s Near Earth Network (NEN) conducted a demonstration test at the Wallops Flight Facility in spring of 2019 for CubeSat/SmallSat missions for enhancing data rate performance in NASA’s S-band 5 MHz channel. The goal is to upgrade NEN with DVB-S2 to increase science data return and enable greater numbers of CubeSats.
This paper presents the NEN DVB-S2 demonstration testing objectives and performance measurement results. Results of the demonstration testing are compared with evolving SmallSat/CubeSat radios. DVB-S2 S-band transmitter development concepts for SmallSats/CubeSats and use of DVB-S2 by future missions are discussed.
NASA Near Earth Network (NEN) DVB-S2 Demonstration Testing for Enhancing Data Rates for CubeSat/SmallSat Missions
National Aeronautics and Space Administration (NASA) CubeSat/SmallSat missions are expected to grow rapidly in the next decade. As the number of spacecraft on a ground network grows, employing higher data rates could reduce loading by reducing the contact time per day required. CubeSats also need to communicate directly to earth from space from longer distances than low earth orbit (LEO). These challenges motivate the need for bandwidth and power efficient modulation and coding techniques.
Today, Digital Video Broadcast, Satellite Second Generation (DVB-S2) is a communications standard for larger satellites. DVB-S2 uses power and bandwidth efficient modulation and coding techniques to deliver performance approaching Radio Frequency (RF) channel theoretical limits. NASA’s Near Earth Network (NEN) conducted a demonstration test at the Wallops Flight Facility in spring of 2019 for CubeSat/SmallSat missions for enhancing data rate performance in NASA’s S-band 5 MHz channel. The goal is to upgrade NEN with DVB-S2 to increase science data return and enable greater numbers of CubeSats.
This paper presents the NEN DVB-S2 demonstration testing objectives and performance measurement results. Results of the demonstration testing are compared with evolving SmallSat/CubeSat radios. DVB-S2 S-band transmitter development concepts for SmallSats/CubeSats and use of DVB-S2 by future missions are discussed.