Session
Pre-Conference Poster Session II
Location
Utah State University, Logan, UT
Abstract
This paper reports the current use of the REXUS/BEXUS educational program. The program allows university students across Europe to carry out scientific and technology experiments on research sounding rockets and balloons. BAMMsat-on-BEXUS (BoB) is an experiment from Cranfield University and University of Exeter performing a technology and operation demonstration of a bioCubeSat on a stratospheric balloon at an altitude of ~30km above the ground. BEXUS stands for Balloon Experiments for University Students and is realized under an agreement between the German Aerospace Centre (DLR), Swedish National Space Agency (SNSA), European Space Agency (ESA), and EuroLaunch. The term bioCubeSat could be used to refer to a nanosatellite in a CubeSat format with a biological experiment on-board. Over the last decade, a series of six bioCubeSats have been launched into orbit by NASA and a private company, SpacePharma, i.e., GeneSat, PharmaSat, O/OREOS, SporeSat, Dido-2, and EcAMSat. The BAMMsat concept (Bioscience, Astrobiology, Medicine and Material science on CubeSat) is a bioscience hardware platform which aims to advance the current state of the art technology, under development at Cranfield University, for application in LEO and beyond LEO. This generic platform can be flown as a free-flying CubeSat or hosted as a payload on a larger spacecraft. BAMMsat utilizes COTS sensors, actuators, and fluidic components to enable bioscience experiments by reproducing the features in a traditional laboratory into a miniaturized “laboratory.” It is designed to be compatible with the mass, volume, and power budget of a CubeSat payload and flexible for a broad range of applications and biological systems such as microorganisms, nematode worms, and mammalian cells cultures, including human cell cultures. The core features of BAMMsat are the ability to (i) house multiple samples, (ii) maintain samples in an appropriate local environment (ii) perturb sample fluidically, and (iv) monitor samples.
BoB aims to perform a technology and operation demonstration of the BAMMsat bioCubeSat payload in an extreme environment such as the stratosphere. The experiment is to be flown on the BEXUS30 flight campaign in October 2020 from ESRANGE Space Centre, Sweden. The stratosphere can be used as an analog of some aspect of a relevant spaceflight physical environment such as reduced pressure (near-vacuum; ~11 mbar), and temperature (-50°C). The BEXUS flight campaign could also be used as an analog of pre-flight, flight and post-flight operation similar to orbital launch campaign. For bioscience experiments, the biological samples often imposed additional requirement during pre-flight to ensure its viability. BoB will house C. elegans in a 2U pressure vessel to demonstrate its functionality to provide a controlled thermal and fluidic environment with appropriate housekeeping control. This functionality reflects the hardware capability to maintain a viable biological sample. BoB has a 3U CubeSat form factor with 2U allocated for the BAMMsat hardware and 1U allocated as the BAMMsat-on-BEXUS bus. This paper reports progress at four months before flight campaign. The paper also discusses an overview of the experiment objectives and systems design, to build a representative CubeSat that is translatable into a free-flying orbital CubeSat.
Paper for BAMMsat-on-BEXUS
BAMMsat-on-BEXUS: A Technology and Operation Demonstration of a BioCubeSat Platform on a Stratospheric Balloon Flight Educational Program
Utah State University, Logan, UT
This paper reports the current use of the REXUS/BEXUS educational program. The program allows university students across Europe to carry out scientific and technology experiments on research sounding rockets and balloons. BAMMsat-on-BEXUS (BoB) is an experiment from Cranfield University and University of Exeter performing a technology and operation demonstration of a bioCubeSat on a stratospheric balloon at an altitude of ~30km above the ground. BEXUS stands for Balloon Experiments for University Students and is realized under an agreement between the German Aerospace Centre (DLR), Swedish National Space Agency (SNSA), European Space Agency (ESA), and EuroLaunch. The term bioCubeSat could be used to refer to a nanosatellite in a CubeSat format with a biological experiment on-board. Over the last decade, a series of six bioCubeSats have been launched into orbit by NASA and a private company, SpacePharma, i.e., GeneSat, PharmaSat, O/OREOS, SporeSat, Dido-2, and EcAMSat. The BAMMsat concept (Bioscience, Astrobiology, Medicine and Material science on CubeSat) is a bioscience hardware platform which aims to advance the current state of the art technology, under development at Cranfield University, for application in LEO and beyond LEO. This generic platform can be flown as a free-flying CubeSat or hosted as a payload on a larger spacecraft. BAMMsat utilizes COTS sensors, actuators, and fluidic components to enable bioscience experiments by reproducing the features in a traditional laboratory into a miniaturized “laboratory.” It is designed to be compatible with the mass, volume, and power budget of a CubeSat payload and flexible for a broad range of applications and biological systems such as microorganisms, nematode worms, and mammalian cells cultures, including human cell cultures. The core features of BAMMsat are the ability to (i) house multiple samples, (ii) maintain samples in an appropriate local environment (ii) perturb sample fluidically, and (iv) monitor samples.
BoB aims to perform a technology and operation demonstration of the BAMMsat bioCubeSat payload in an extreme environment such as the stratosphere. The experiment is to be flown on the BEXUS30 flight campaign in October 2020 from ESRANGE Space Centre, Sweden. The stratosphere can be used as an analog of some aspect of a relevant spaceflight physical environment such as reduced pressure (near-vacuum; ~11 mbar), and temperature (-50°C). The BEXUS flight campaign could also be used as an analog of pre-flight, flight and post-flight operation similar to orbital launch campaign. For bioscience experiments, the biological samples often imposed additional requirement during pre-flight to ensure its viability. BoB will house C. elegans in a 2U pressure vessel to demonstrate its functionality to provide a controlled thermal and fluidic environment with appropriate housekeeping control. This functionality reflects the hardware capability to maintain a viable biological sample. BoB has a 3U CubeSat form factor with 2U allocated for the BAMMsat hardware and 1U allocated as the BAMMsat-on-BEXUS bus. This paper reports progress at four months before flight campaign. The paper also discusses an overview of the experiment objectives and systems design, to build a representative CubeSat that is translatable into a free-flying orbital CubeSat.