Session
Technical Session III: Science/Mission Payloads
Location
Utah State University, Logan, UT
Abstract
The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a collaborative space mission between the UK Defence Science and Technology Laboratory (Dstl), and the US Naval Research Laboratory (NRL) in developing small satellite ionospheric physics capability. CIRCE will characterise space weather effects on a regional scale in the ionosphere/thermosphere system. Properly characterising the dynamic ionosphere is important for a wide range of both civil and defence applications such as GPS, communications, and sensing technology.
Consisting of two near-identical 6U (2x3U) CubeSat buses, the CIRCE nanosatellites will fly in a lead-follow tandem configuration in co-planar near-polar orbits at 500km altitude. Provided by Blue Canyon Technologies (BCT), the two buses will use differential drag to achieve and maintain an in-track separation of between 250 and 500km, allowing short time-scale dynamics to be observed in-situ. These nanosatellites each carry a complement of 5 individual scientific instruments, contributed from academic, industrial, and government partners across the UK and US.
Scheduled to launch in 2021 via the US Department of Defence Space Test Program, the two CIRCE satellites will provide observations to enable a greater understanding of the driving processes of geophysical phenomena in the ionosphere/thermosphere system, distributed across a wide range of latitudes, and altitudes, as the mission progresses.
CIRCE: Coordinated Ionospheric Reconstruction Cubesat Experiment
Utah State University, Logan, UT
The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a collaborative space mission between the UK Defence Science and Technology Laboratory (Dstl), and the US Naval Research Laboratory (NRL) in developing small satellite ionospheric physics capability. CIRCE will characterise space weather effects on a regional scale in the ionosphere/thermosphere system. Properly characterising the dynamic ionosphere is important for a wide range of both civil and defence applications such as GPS, communications, and sensing technology.
Consisting of two near-identical 6U (2x3U) CubeSat buses, the CIRCE nanosatellites will fly in a lead-follow tandem configuration in co-planar near-polar orbits at 500km altitude. Provided by Blue Canyon Technologies (BCT), the two buses will use differential drag to achieve and maintain an in-track separation of between 250 and 500km, allowing short time-scale dynamics to be observed in-situ. These nanosatellites each carry a complement of 5 individual scientific instruments, contributed from academic, industrial, and government partners across the UK and US.
Scheduled to launch in 2021 via the US Department of Defence Space Test Program, the two CIRCE satellites will provide observations to enable a greater understanding of the driving processes of geophysical phenomena in the ionosphere/thermosphere system, distributed across a wide range of latitudes, and altitudes, as the mission progresses.