Session
Technical Session III: Science/Mission Payloads
Location
Utah State University, Logan, UT
Abstract
The Deformable Mirror Demonstration Mission (DeMi) is a 6U CubeSat that will operate and characterize the on-orbit performance of a Microelectromechanical Systems (MEMS) deformable mirror (DM) with both an image plane and a Shack-Hartmann wavefront sensor (SHWFS). Coronagraphs on future space telescopes will require precise wavefront control to detect and characterize Earth-like exoplanets. High-actuator count MEMS deformable mirrors can provide wavefront control with low size, weight, and power. The DeMi payload will characterize the on-orbit performance of a 140 actuator MEMS DM with 5.5 μm maximum stroke, with a goal of measuring individual actuator wavefront displacement contributions to a precision of 12 nm. The payload is designed to measure low order aberrations to λ/10 accuracy and λ/50 precision, and correct static and dynamic wavefront phase errors to less than 100 nm RMS. The thermal stability of the payload is key to maintaining the errors below that threshold. To decrease mismatches between coefficients of thermal expansion, the payload structure is made out of a single material, aluminum 7075. The gap between the structural components of the payload was filled with a thermal gap filler to increase the temperature homogeneity of the payload. The fixture that holds the payload into the bus is a set of three titanium flexures, which decrease the thermal conductivity between the bus and the payload while providing flexibility for the payload to expand without being deformed. The mounts for the optical components are attached to the main optical bench through kinematic coupling to allow precision assembly and location repeatability. The MEMS DM is controlled by miniaturized high-voltage driver electronics. Two cross-strapped Raspberry Pi 3 payload computers interface with the DM drive electronics. Each Raspberry Pi is paired to read out one of the wavefront sensor cameras. The DeMi payload is ~4.5U in volume, 2.5 kg in mass, and is flying on a 6U spacecraft built by Blue Canyon Technologies. The satellite launch was on February15,2020 onboard a Northrop Grumman Antares rocket, lifting off from the NASA Wallops Flight Facility. We present the mechanical design of the payload, the thermal considerations and decisions taken into the design, the manufacturing process of the flight hardware, and the environmental testing results.
Thermomechanical design and testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat
Utah State University, Logan, UT
The Deformable Mirror Demonstration Mission (DeMi) is a 6U CubeSat that will operate and characterize the on-orbit performance of a Microelectromechanical Systems (MEMS) deformable mirror (DM) with both an image plane and a Shack-Hartmann wavefront sensor (SHWFS). Coronagraphs on future space telescopes will require precise wavefront control to detect and characterize Earth-like exoplanets. High-actuator count MEMS deformable mirrors can provide wavefront control with low size, weight, and power. The DeMi payload will characterize the on-orbit performance of a 140 actuator MEMS DM with 5.5 μm maximum stroke, with a goal of measuring individual actuator wavefront displacement contributions to a precision of 12 nm. The payload is designed to measure low order aberrations to λ/10 accuracy and λ/50 precision, and correct static and dynamic wavefront phase errors to less than 100 nm RMS. The thermal stability of the payload is key to maintaining the errors below that threshold. To decrease mismatches between coefficients of thermal expansion, the payload structure is made out of a single material, aluminum 7075. The gap between the structural components of the payload was filled with a thermal gap filler to increase the temperature homogeneity of the payload. The fixture that holds the payload into the bus is a set of three titanium flexures, which decrease the thermal conductivity between the bus and the payload while providing flexibility for the payload to expand without being deformed. The mounts for the optical components are attached to the main optical bench through kinematic coupling to allow precision assembly and location repeatability. The MEMS DM is controlled by miniaturized high-voltage driver electronics. Two cross-strapped Raspberry Pi 3 payload computers interface with the DM drive electronics. Each Raspberry Pi is paired to read out one of the wavefront sensor cameras. The DeMi payload is ~4.5U in volume, 2.5 kg in mass, and is flying on a 6U spacecraft built by Blue Canyon Technologies. The satellite launch was on February15,2020 onboard a Northrop Grumman Antares rocket, lifting off from the NASA Wallops Flight Facility. We present the mechanical design of the payload, the thermal considerations and decisions taken into the design, the manufacturing process of the flight hardware, and the environmental testing results.