Session

Technical Session VIII: Space Access

Location

Utah State University, Logan, UT

Abstract

The proliferation and sustained growth of small satellite architecture solutions, once an uncertain aspect of tomorrow’s space industry, are now largely perceived as a firm reality. Recent trends continue to show an increasing fraction of launch industry revenue being captured by small and dedicated launch vehicles, such as Virgin Orbit’s LauncherOne. Concurrently, another indicator of small satellite proliferation are recent announcements of increased rideshare opportunities by large launch vehicle operators. As numerous dedicated and rideshare launches emerge as solutions for small satellite customers, understanding the relative advantages and performance of these vehicles will be crucial to satisfy not only single launch, but broader architectural mission needs.

Virgin Orbit and VOX Space have presented how a responsive air-launched architecture with multiple hosting spaceports and modularized systems at each can be leveraged to launch entire constellations within days. We have since continued to grow our spaceport network to support domestic and international mission planners that desire a launch vehicle that isn’t constrained to a permanent fixed site or departure corridor. Building upon that work, new analytical methods to analyze and communicate the advantages of air-launch from spaceports around the globe have been devised. Specifically we will quantitatively show how commercial and national security missions, especially in an era that require hybrid architectures, are improved with a geographically flexible and distributed launch capability. Tens of thousands of launches from unique sites are simulated to support various mission types. The result is an explicit evaluation of how the flexibility, ease-of-access, and unconstrained orbital inclination ranges of a global launch network can support hybrid system needs in ways that no other comparable launch system can, dedicated or otherwise.

SSC20-VIII-07.pdf (8441 kB)

Share

COinS
 
Aug 1st, 12:00 AM

Building a Global Launch Network: Extending the Reach of Dedicated Small Satellite Launch Using New, Data-Driven Spaceport Assessment Tools

Utah State University, Logan, UT

The proliferation and sustained growth of small satellite architecture solutions, once an uncertain aspect of tomorrow’s space industry, are now largely perceived as a firm reality. Recent trends continue to show an increasing fraction of launch industry revenue being captured by small and dedicated launch vehicles, such as Virgin Orbit’s LauncherOne. Concurrently, another indicator of small satellite proliferation are recent announcements of increased rideshare opportunities by large launch vehicle operators. As numerous dedicated and rideshare launches emerge as solutions for small satellite customers, understanding the relative advantages and performance of these vehicles will be crucial to satisfy not only single launch, but broader architectural mission needs.

Virgin Orbit and VOX Space have presented how a responsive air-launched architecture with multiple hosting spaceports and modularized systems at each can be leveraged to launch entire constellations within days. We have since continued to grow our spaceport network to support domestic and international mission planners that desire a launch vehicle that isn’t constrained to a permanent fixed site or departure corridor. Building upon that work, new analytical methods to analyze and communicate the advantages of air-launch from spaceports around the globe have been devised. Specifically we will quantitatively show how commercial and national security missions, especially in an era that require hybrid architectures, are improved with a geographically flexible and distributed launch capability. Tens of thousands of launches from unique sites are simulated to support various mission types. The result is an explicit evaluation of how the flexibility, ease-of-access, and unconstrained orbital inclination ranges of a global launch network can support hybrid system needs in ways that no other comparable launch system can, dedicated or otherwise.