Session

Pre-Conference Poster Session I

Location

Utah State University, Logan, UT

Abstract

The aim of this paper is to assess the feasibility of using currently available commercial-off-the-shelf (COTS) small-satellites components in deep-space scenarios, studying their applicability and performance. To evaluate the performances, an asteroid fly-by mission is briefly introduced, but several of the selection criteria and ideas can be extended to other deep space mission concepts. This particular mission scenario requires to follow three main trends: miniaturization, standardization and automation. For this reason the mission represents a good test bench scenario to analyze the products of the current small-satellites industry. Once the reference mission has been defined, the preliminary ΔV is computed and the micro-propulsion system is selected. Afterwards, for several satellite subsystems the requirements are compared with the expected performance of a set of small-satellite components currently available on the market. Once the most promising hardware solutions are identified, mass and volume budgets are defined. Subsequently, drawbacks and limits of using COTS components for deep-space exploration are highlighted, focusing on the readiness level of each subsystem. Finally, recommendations are given on what methods and hardware are needed in the near future to overcome the limiting factors and to allow deep-space exploration using low-cost CubeSats.

Share

COinS
 
Aug 1st, 12:00 AM

Towards the Use of Commercial-off-the-Shelf Small-Satellite Components for Deep-Space CubeSats: a Feasibility and Performance Analysis

Utah State University, Logan, UT

The aim of this paper is to assess the feasibility of using currently available commercial-off-the-shelf (COTS) small-satellites components in deep-space scenarios, studying their applicability and performance. To evaluate the performances, an asteroid fly-by mission is briefly introduced, but several of the selection criteria and ideas can be extended to other deep space mission concepts. This particular mission scenario requires to follow three main trends: miniaturization, standardization and automation. For this reason the mission represents a good test bench scenario to analyze the products of the current small-satellites industry. Once the reference mission has been defined, the preliminary ΔV is computed and the micro-propulsion system is selected. Afterwards, for several satellite subsystems the requirements are compared with the expected performance of a set of small-satellite components currently available on the market. Once the most promising hardware solutions are identified, mass and volume budgets are defined. Subsequently, drawbacks and limits of using COTS components for deep-space exploration are highlighted, focusing on the readiness level of each subsystem. Finally, recommendations are given on what methods and hardware are needed in the near future to overcome the limiting factors and to allow deep-space exploration using low-cost CubeSats.