Session

Pre-Conference Workshop Session II: A Look Back: Lessons Learned

Location

Utah State University, Logan, UT

Abstract

Advanced eLectrical Bus (ALBus) CubeSat is a technology demonstration mission of a 3-U CubeSat with an advanced digitally controlled electrical power system and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The primary objective was to advance the power management and distribution (PMAD) capabilities to enable future missions requiring more flexible and reliable power systems with higher output power capabilities. Goals included demonstration of 100W distribution to a target electrical load, response to continuous and fast transient power requirements, and exhibition of reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability, as power is distributed from batteries to provide 100W of power directly to a resistive load. The deployable solar arrays utilize NASA’s Nickel-Titanium-Palladium-Platinum (NiTiPdPt) high-temperature SMAs for the retention and release mechanism, and a superelastic binary NiTi alloy for the hinge component. The project launched as part of the CubeSat Launch Initiative (CLI) Educational Launch of Nanosatellites (ELaNa) XIX mission on Rocket Lab’s Electron in December 2018. This paper summarizes the final launched design and the lessons learned from build to flight.

SSC20-WKII-01.pdf (1705 kB)

Share

COinS
 
Aug 1st, 12:00 AM

Advanced eLectrical Bus (ALBus) CubeSat: From Build to Flight

Utah State University, Logan, UT

Advanced eLectrical Bus (ALBus) CubeSat is a technology demonstration mission of a 3-U CubeSat with an advanced digitally controlled electrical power system and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The primary objective was to advance the power management and distribution (PMAD) capabilities to enable future missions requiring more flexible and reliable power systems with higher output power capabilities. Goals included demonstration of 100W distribution to a target electrical load, response to continuous and fast transient power requirements, and exhibition of reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability, as power is distributed from batteries to provide 100W of power directly to a resistive load. The deployable solar arrays utilize NASA’s Nickel-Titanium-Palladium-Platinum (NiTiPdPt) high-temperature SMAs for the retention and release mechanism, and a superelastic binary NiTi alloy for the hinge component. The project launched as part of the CubeSat Launch Initiative (CLI) Educational Launch of Nanosatellites (ELaNa) XIX mission on Rocket Lab’s Electron in December 2018. This paper summarizes the final launched design and the lessons learned from build to flight.