Session
Swifty Session 6: Ground Systems & Operations
Location
Utah State University, Logan, UT
Abstract
Space missions are characterized by long distances, difficult or unavailable communication and high operating costs. Moreover, complexity has been constantly increasing in recent years. For this reason, improving the autonomy of space operators is an attractive goal to increase the mission reward with lower costs. This paper proposes an onboard scheduler, that integrates inside an onboard software framework for mission autonomy. Given a set of activities, it is responsible for determining the starting time of each activity according to their priority, order constraints, and resource consumption. The presented scheduler is based on linear integer programming and relies on the use of a branch-and-cut solver. The technology has been tested on an Earth Observation scenario, comparing its performance against the state-of-the-art scheduling technology.
Innovations in the Field of On-Board Scheduling Technologies
Utah State University, Logan, UT
Space missions are characterized by long distances, difficult or unavailable communication and high operating costs. Moreover, complexity has been constantly increasing in recent years. For this reason, improving the autonomy of space operators is an attractive goal to increase the mission reward with lower costs. This paper proposes an onboard scheduler, that integrates inside an onboard software framework for mission autonomy. Given a set of activities, it is responsible for determining the starting time of each activity according to their priority, order constraints, and resource consumption. The presented scheduler is based on linear integer programming and relies on the use of a branch-and-cut solver. The technology has been tested on an Earth Observation scenario, comparing its performance against the state-of-the-art scheduling technology.